

Chemical Engineering Journal 134 (2007) 11–15

Chemical Engineering Journal

www.elsevier.com/locate/cej

Elementary sulfur recovery by H_2 -regeneration of SO₂-adsorbed $CuO/Al₂O₃$ —Effect of operation parameters

Youhua Zhao ^a,b, Zhenyu Liu ^a,∗, Zhehua Jia ^a,^b

^a *State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China* ^b *Graduate University of Chinese Academy of Sciences, Beijing, 100049, PR China*

Abstract

CuO/Al₂O₃ is capable of removing SO₂ and NO_X from flue gas simultaneously at around 400 °C. After the SO₂ removal, the SO₂-adsorbed $CuO/Al₂O₃$ needs to be treated to regenerate its $SO₂$ removal capacity and to recover the removed sulfur. This paper reports recent research on direct formation of elementary sulfur during H_2 -regeneration of the SO₂-adsorbed CuO/Al₂O₃ through recycling of the regeneration tail gas. In such a way, the SO₂ removal, the sorbent-catalyst's regeneration and elementary sulfur recovery can be carried out in a single reactor. The operating parameters studied include the amounts of H₂ fed into the reactor, H₂ feed strategy and O_2 treatment of the H₂-regenerated CuO/Al₂O₃. An intermittent H_2 feeding mode is found to give a higher elementary sulfur yield (91%), less residual sulfur-compounds in the system after the regeneration, and higher SO₂ capacity in the subsequent SO₂ removal process. An O₂ treatment after the H₂-regeneration improves the elementary sulfur yield further and results in a number of other advantages.

© 2007 Elsevier B.V. All rights reserved.

Keywords: CuO/Al₂O₃; SO₂ removal; H₂-regeneration; Elementary sulfur

1. Introduction

 $CuO/Al₂O₃$ is an important sorbent-catalyst for simultaneous $SO₂$ and NO_X removal from flue gas. During the $SO₂$ removal CuO reacts with SO_2 in the presence of O_2 to form CuSO₄, some of the Al₂O₃ may also react with SO₂ to form $Al_2(SO_4)$ ₃ [\[1,2\].](#page-4-0) Upon saturation of the CuO/Al₂O₃ by SO₂, it subjects to a regeneration treatment to convert CuSO4 back to CuO (elementary Cu in some case) and gaseous SO_2 by a reducing gas such as H_2 , $NH₃$, or CO [\[3–5\].](#page-4-0) The SO₂ released is then processed to either produce sulfuric acid through oxidization, or elementary sulfur through reduction by H_2 , or ammonium sulfate through reaction with $NH₃$, or liquid $SO₂$ through condensation. All these processes need additional reactors and most of them need catalysts [\[6,7\], w](#page-4-0)hich results in an increase in cost.

Our preliminary research shows that the regeneration of a SO_2 -adsorbed CuO/Al₂O₃ and recovery of elementary sulfur can be carried out in the same reactor as for SO_2 removal, if H_2 is used and the tail gas from the H_2 -regeneration is recycled back. In this case, the Cu species on $CuO/Al₂O₃$ serves

E-mail address: zyliu@sxicc.ac.cn (Z. Liu).

1385-8947/\$ – see front matter © 2007 Elsevier B.V. All rights reserved. doi[:10.1016/j.cej.2007.03.053](dx.doi.org/10.1016/j.cej.2007.03.053)

as the sorbent for SO_2 during the SO_2 removal stage and the catalyst for reduction of the released $SO₂$ to elementary sulfur during the regeneration stage. This simplifies the overall process. For example, at a temperature of 400° C, CuO/Al₂O₃ can adsorb $SO₂$ from flue gas efficiently with a long-term stable $SO₂$ removal capacity close to the stoichiometric amounts of Cu in the CuO/Al₂O₃ and gives an elementary sulfur yield of 80% in the H2-regeneration at the same temperature. After the H2-regeneration, the Cu species in the sorbent-catalyst include mainly elementary Cu and a lesser amount of CuS. The CuS is possibly the catalyst for the elementary sulfur recovery, but it has no ability to adsorb SO_2 in the subsequent SO_2 removal stage. Furthermore, the CuS reacts quickly with O_2 in flue gas, which results in a short-time surge in $SO₂$ release and in a bed temperature increase upon oxygen contact with flue gas [\[4\]. T](#page-4-0)hese reaction steps seriously influence the $SO₂$ removal capacity and long-term stability of $CuO/Al₂O₃$ and make the process control difficult.

In principle, the amount of CuS or elementary Cu formed in the H_2 -regeneration is not constant but depends on the regeneration conditions. Therefore, it is possible to reduce the amounts of CuS through adjustments in regeneration conditions. This study investigates the effects of operating conditions on the effectiveness of the H₂-regeneration of a SO₂-adsorbed CuO/Al₂O₃ with

[∗] Corresponding author. Fax: +86 351 4050320.

aims for higher elementary sulfur yield, less remnants of CuS, and smaller $SO₂$ release and temperature increase at the early stage of the SO_2 removal. The study includes effects of H_2 feed, H_2 feed strategy and O_2 treatment in the H_2 -regeneration.

2. Experimental

2.1. Sorbent preparation

A γ -Al₂O₃ support (30–60 mesh, BET surface area of $185 \,\mathrm{m^2\,g^{-1}}$) is impregnated with an aqueous Cu(NO₃)₂ 3H₂O solution and then calcined at 500 ◦C for 8 h in a muffle furnace after drying at 50° C for 8 h and at 110° C for 5 h. The final sample contains about 8 wt.% CuO.

2.2. Experimental procedure

Fig. 1 is the flow chart of the overall process. First, the SO_2 removal step (the dot lines in Fig. 1) is carried out at $400\degree\text{C}$ by feeding a simulated flue gas, containing 2200 ppm SO_2 , 6% O_2 and balance N_2 , to the fixed-bed reactor of 15 mm in diameter with 4 g CuO/Al₂O₃. When the SO₂ removal rate decreases from the initial 100% to 80%, the feed flue gas is switched to pure N_2 to purge the reactor for 30 min. The reactor is then fed with H2, at a flow rate of 4 ml/min, and the recycled tail gas from the reactor at a flow rate of 400 ml/min, to start the regeneration and the elementary sulfur recovery steps (the solid lines in Fig. 1). The elementary sulfur formed is collected in the cold trap.

The compositions of the inlet and the outlet of the reactor (during the $SO₂$ removal stage) and the recycled gas composition (during the H_2 -regeneration and elementary sulfur recovery stages) are all determined on-line by a Blazers QMG 422 quadrupolar mass spectrometer. The H_2 feeding rate and cumulative H_2 fed are controlled and measured by a mass flow controller. To prevent elementary sulfur condensation prior to the cold trap, the tubing between the reactor and the cold trap is maintained at 250° C with a heating tape while the cold trap is maintained at room temperature. The regeneration and elementary sulfur recovery stages are terminated when the amount of elementary sulfur collected in the cold trap does not increase further. The elementary sulfur is then dried and weighed. The

Fig. 1. Experimental apparatus.

yield of elementary sulfur is defined as:

$$
Y_T(\%) = \frac{m_T}{M_T}
$$

where Y_T is the sulfur yield at the regeneration temperature of T , m_T the mass of elementary sulfur collected at the regeneration temperature of T , and M_T is the mass of regenerable sulfur adsorbed on $CuO/Al₂O₃$ which equals the amount of elementary sulfur adsorbed in the subsequent $SO₂$ removal stage.

2.3. Characterization of the sorbent-catalyst

The amount of CuS is determined by the difference in water-soluble Cu (measured by ICP-AES, model Atomscan 16, manufactured by TJA, America) in the sorbent-catalyst before and after the conversion of CuS to CuSO4. Sulfur content of the sorbent-catalyst samples are measured by elementary analysis (KZDL-3B, China). Chemical morphology of S and Cu in the sorbent-catalyst is characterized by X-ray photoelectron spectroscopy measurement, which is carried out on a PHI-5300 ESCA system using Al K α radiation (1486.6 eV) at a residual pressure in the vacuum chamber of 10−¹⁰ Torr.

3. Results and discussion

3.1. Effect of H2 feed

Fig. 2A shows the mass of elementary sulfur collected in millimole per gram of sorbent-catalyst at various total amounts of H_2 fed into the reactor at a regeneration temperature of 400 °C. Fig. 2B shows representative MS curves of $SO₂$ and $H₂S$ obtained during one of the runs. The results show that $SO₂$ is the primary gas product of the H_2 -regeneration as evidenced by the high SO_2 concentration at low H_2/Cu molar ratios. At a $H₂/Cu$ ratio of 4.2 the SO₂ concentration starts to decrease and elementary sulfur starts to appear in the cold trap. The amount of elementary sulfur collected increases then with an increase in H₂/Cu ratio. These phenomena indicate conversion of $SO₂$

Fig. 2. Effect of H_2 feed on elementary sulfur moles: data in A are obtained for different total amount of H_2 ; data in B show the changes of sulfur-gases during one of the run. Regeneration conditions: $400\degree C$, continuously fed H₂.

to elementary sulfur. The amount of elementary sulfur reaches a maximum at $H₂/Cu$ ratios of around 5.7, where $SO₂$ concentration drops to the baseline. At a H_2/Cu ratio of 5.1 H_2S starts to appear in the gas phase, and its concentration increases with an increase in H_2/Cu ratio. These data suggest that H_2S is a secondary product of the regeneration, resulting from hydrogenation of $SO₂$ and the elementary sulfur formation is possibly affected by the concentration ratio of H_2S and SO_2 . It is important to note that the retention time of the sorption reactor ([Fig. 1\)](#page-1-0) under the experimental conditions is about 11 min, corresponding to a superficial H_2/Cu ratio of 0.5, and the recycle always contains residual sulfur-containing gases during the regeneration. In this regard the starting and the ending point in $H₂/Cu$ ratio for the elementary sulfur formation are about 3.7 and 4.7, respectively. These values seem to agree with the reaction stoichiometry for the formation of elementary sulfur and CuS under the H_2 atmosphere:

$$
CuSO4 + 4H2 \rightarrow Cu + S + 4H2O
$$
 (1)

$$
CuSO_4 + 4H_2 \rightarrow CuS + 4H_2O \tag{2}
$$

Fig. 3 shows the residual CuS content after completion of the H₂-regeneration at various H₂/Cu ratios and the amount of $SO₂$ released upon interaction of the newly regenerated sorbentcatalyst with the flue gas (with 6% O₂). The difference between CuS and $SO₂$ is the amount of $CuSO₄$ formed in the same time due to the reaction of SO_2 and CuO. Clearly the amount of residual CuS increases with an increase in $H₂/Cu$ ratio, and a higher CuS content corresponds to a higher $SO₂$ release. These data suggest that about 37% SO_2 adsorbed on the CuO/Al₂O₃ stays on the sorbent-catalyst in the form of CuS and the rest of the SO_2 is converted to elementary sulfur. This amount of CuS is obviously too high if H_2 is fed continuously in the regeneration.

3.2. Effect of H2 feed strategy

To reduce the CuS content, an intermittent H_2 feeding mode is tested in the regeneration. Fig. 4 shows changes in SO_2 , H_2S and H2 profile in the system during the regeneration. In Stage I,

Fig. 3. Residual CuS in CuO/Al₂O₃ after H₂-regeneration with different H₂/Cu and the released $SO₂$ amounts in subsequent initial sulfation stage.

Fig. 4. Effect of intermittent H_2 feeding mode on gaseous composition: H_2 is fed continuously in stages of I, III and V; $H₂$ is stopped in stages of II, IV and VI. Regeneration conditions: 400° C, H₂ feeding rate of 4 ml/min.

 $H₂$ is fed continuously to the reactor at a flow rate of 4 ml/min. After about 11 min on stream, $SO₂$ starts to appear in a fast rate and reaches the maximum in 20 min, which is followed by a 20% decrease to a stable value. During this time period no elementary sulfur is found in the cold trap. At time on stream of 95 min H_2 breakthrough and $SO₂$ decrease are observed simultaneously, which are accompanied by elementary sulfur deposition in the cold trap. No H_2S is detected in Stage I. Stage II starts when $H₂S$ is observed in the gas phase, and the feed $H₂$ is stopped. A fast decrease in H_2 concentration and a slight increase in SO_2 concentration are observed in this stage, indicating consumption of H2. The H2 feed is resumed in Stage III for 8 min. An immediate increase in H_2 concentration, an immediate decrease in SO_2 concentration and a delayed increase in H_2S concentration are observed. The Stage IV starts when H_2 feed is stopped again. Different from Stage II, $SO₂$ concentration shows no increase and H2S concentration shows a slow decrease in this stage. In Stage V the H_2 feed is again resumed. Apparently, H_2S concentration increases in a much faster rate in this stage than does in Stage III. In Stage VI, the stop of the H_2 feed does not reduce H2S concentration. The information contained in Fig. 4 suggests that (1) the regeneration consumes all the fed H_2 in the early state and yields only $SO₂$ before elementary sulfur is collected, indicating consumption of H_2 for SO_2 formation in this early state of regeneration; (2) when elementary sulfur is being formed, H_2S show the same trend as H_2 , indicating its formation from hydrogenation of SO_2 ; (3) SO_2 shows an opposite trend in comparison to H_2 and H_2S , indicating its consumption involving a reaction with H_2S ; (4) the formation of elementary sulfur is likely associated with the direct reaction between H_2S and SO_2 .

[Table 1](#page-3-0) and [Fig. 5](#page-3-0) compare the results of the two H_2 feeding mode. Obviously, compared to the continuous H_2 feeding mode the intermittent H_2 feeding mode (1) converts more CuSO₄ into SO_2 , resulting in a higher SO_2 removal capacity in the subsequent $SO₂$ removal process; (2) yields more elementary sulfur (91%) and less residual sulfur-containing gases in the system after the regeneration; (3) yields less CuS in the sorbent after

Table 1

H_2 feeding mode	$SO2$ capacity $(mmol/g-sorb)$	Elementary sulfur $(mmol/g-sorb)$	Released $SO2$ $(mmol/g-sorb)$	Residual sulfur-gases $(mmol/g-sorb)$
Intermittent	0.64	0.56	0.25	0.08
Continuous	0.60	0.50	0.30	0.10
Continuous with $O2$ treatment	0.56	0.53		

Effect of H_2 feed mode on the released SO_2 and SO_2 removal capacity in the subsequent sulfation process

SO₂ capacity = SO₂ absorbed in the total sulfation $-$ SO₂ released in the initial sulfation.

the regeneration, corresponding to less $SO₂$ released from oxidation of CuS; (4) consumes less H_2 in the regeneration. These results show that the amounts of CuS and H2S can be controlled and the elementary sulfur yield can be significantly improved simply by adjustment in H_2 feeding strategy.

3.3. Effect of O2 treatment after the H2-regeneration

The residual sulfur-containing gases in the system are mainly $H₂S$ and $H₂$ (no SO₂) after the continuous regeneration mode, while the solid sulfur in the sorbent is mainly CuS. Thus, an input of some amounts of O_2 may transform CuS into CuO and $SO₂$ and result in more reaction between H₂S and SO₂ to form elementary sulfur. Fig. 6 shows SO_2 and H_2S profiles during the continuous regeneration mode followed by replacement of the H_2 feed by an air feed at 10 ml/min at a time on stream of 140 min. It is interesting to note that the O_2 in the air completely disappeared from the gas phase for 50 min of the air introduction. The O_2 breakthrough occurs only when H_2S in the gas phase undergoes fast decreases to the baseline, and no $SO₂$ is observed in the gas during the whole air treatment. These phenomena are accompanied by a slight increase in bed temperature, from $400\degree$ C to $408\degree$ C, and a significant increase in elementary sulfur yield, from 83% to around 95%. Fig. 7 shows MS signals of $SO₂$ during the early stage of the $SO₂$ removal process using a sorbent-catalyst regenerated with the O_2 treatment (Fig. 7A) and without the O_2 treatment (Fig. 7B). The absence of SO_2 peak in

Fig. 5. Effect of H2 feeding mode on elementary sulfur yield. Regeneration temperature: 400 ◦C.

Fig. 7A suggests the absence of CuS in the sorbent-catalyst after the $O₂$ treatment. The bed temperature in these two cases is also different, no visible change for the sample with the O_2 treatment but a fast increase from 400 °C to 435 °C for the sample without the O_2 treatment. It is to be noted that the temperature change may also result from the reaction between Cu and O_2 , in addition to that between CuS and O2.

The O_2 treatment also eliminates the residual gaseous sulfur in the system, a portion of it is transformed into elementary

Fig. 6. Changes of gaseous composition in the system with $O₂$ treatment after continuous H2-regeneration. Regeneration temperature: 400 ◦C.

Fig. 7. MS signals of SO_2 in subsequent sulfation of CuO/Al_2O_3 with or without O₂ treatment in H₂-regeneration. Temperature: 400° C.

Fig. 8. XPS spectra of S 2p in CuO/Al₂O₃ with or without O₂ treatment after H_2 -regeneration.

sulfur and the rest of it is being adsorbed by the sorbent-catalyst in the form of CuSO4.

Fig. 8 shows XPS spectra of S 2p of CuO/Al₂O₃ subjected to the regeneration with and without the O_2 treatment. For the case without the O_2 treatment (Fig. 8a), the sample shows two peaks at 163 eV and 169 eV, which can be assigned to S^{2-} and S^{6+} , corresponding to the sulfur in CuS and $Al₂(SO₄)₃$, respectively. For the case with the O_2 treatment (Fig. 8b), the sample shows only one stronger peak at 169 eV indicating the absence of S^{2-} and increased S^{6+} . These results agree with the earlier discussion that the O_2 treatment converts CuS into CuSO₄.

4. Conclusions

After flue gas SO_2 removal at around 400 °C, the SO_2 adsorbed CuO/Al₂O₃ can be regenerated in H_2 at the same temperature to recover its $SO₂$ removal activity and obtain elementary sulfur simultaneously if the tail gas from the regeneration is recycled back to the reactor. The amount of H_2 fed and the H_2 feeding strategy are important parameters that determine the concentrations of SO_2 and H_2S in the system, and in turn the elementary sulfur yield and the $SO₂$ capacity in the subsequent $SO₂$ removal process. Intermittent $H₂$ feeding mode is preferred due to its ability to adjust the SO_2 to H_2S ratio for high elementary sulfur yields. Under the conditions used in this paper an elementary sulfur yield of 91% is obtained. An O_2 treatment of the regenerated $CuO/Al₂O₃$ after the H₂-regeneration increases the elementary sulfur yield further, eliminates the residual sulfurcontaining gases in the system, and converts CuS and Cu into CuO and CuSO4, which is very important for the long-term stability of $CuO/Al₂O₃$ since $SO₂$ and temperature peaks during the early stage of the $SO₂$ removal process are safely eliminated.

Acknowledgement

The authors express their grateful appreciation to financial support from the Natural Science Foundation of China (90210034).

References

- [1] M. Waqif, O. Saur, J.C. Lavalley, S. Perathoner, G. Centi, J. Phys. Chem. 95 (1991) 4051.
- [2] K.S. Yoo, S.D. Kim, S.B. Park, Ind. Eng. Chem. Res. 33 (1994) 1786.
- [3] K.S. Yoo, S.M. Jeong, S.D. Kim, S.B. Park, Ind. Eng. Chem. Res. 35 (1996) 1543.
- [4] G.Y. Xie, Z.Y. Liu, Z.P. Zhu, Q.Y. Liu, J.R. Ma, Appl. Catal. B 45 (2003) 213.
- [5] G. Centi, N. Passarini, S. Perathoner, A. Riva, Ind. Eng. Chem. Res. 31 (1992) 1947.
- [6] S.C. Paik, J.S. Chung, Appl. Catal. B 5 (1995) 233.
- [7] S.C. Paik, J.S. Chung, Appl. Catal. B 8 (1996) 267.